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Statement of the problem studied 

 

The primary focus of this work is on developing robust algorithms and algorithm fusion 

architectures to reduce false alarm rates and improve detection rates for landmines.  Two 

major systems were studied, the AMDS system and the GSTAMIDS/HMDS GPR.  In the 

EMI-based systems, false alarm reductions were achieved algorithmically, and in the 

multi-sensor systems additional false alarm rate reduction was obtained when  

 

Summary of the most important results 

 

A list of the most important results is shown below, with relevant details following. 

 

1. Robust pre-screener implemented for NIITEK radar, modified for theatre data 

2. Improved ground-bounce tracking algorithms developed 

3. Feature-based algorithms proposed and tested 

4. Sensor and feature fusion algorithms proposed and tested 

5. New context dependent algorithm developed 

6. L3 data processing 

 

LMS-Based Prescreener 

 

The Wichmann/Niitek radar is a very wide band (200 MHz to 7 GHz) impulse radar with 

extremely low radar cross section. Thus, the radar implicitly solves many of the d 

problems previously associated with subsurface discrimination using ground penetrating 

radar based systems.  Furthermore, due to the high bandwidth of this radar, accurate 

phenomenology of buried objects can often be discerned including some of their inner 

structure. This has lead us to hypothesize that sub-surface target identification and 

discrimination may be possible using the signals measured with this radar system. 

However target discrimination is often too computationally expensive to meet the real-

time requirements of this, a vehicular system. 

 

These real-time requirements have led us to develop a two stage algorithm which is 

divided into pre-screening and  feature-processing stages. The goal of the pre-screening 

stage is to quickly flag potential locations of interest and to pass these locations along to 

the feature-processor. The feature processor will then attempt to separate targets from 

naturally occurring clutter and make final decisions regarding the confidence values for 

each of the alarms presented by the prescreener.  Thus the amount of data which is 

analyzed by the feature processor is limited by the number of alarms the prescreener 

generates. Ideally, the splitting of data processing into two stages should allow for more 

complicated feature-based discrimination algorithms to operate on the small subset of 

pre-screener-flagged data in a real-time manner. In this paper, we present results from 

field and blind tests generated by both the pre-screener and the pre-screener followed by 

the feature-based processor. 

 

A two-stage algorithm for landmine detection with a ground penetrating radar (GPR) 

system was developed and tested extensively under this effort. First, 3-D data sets are 



processed using a computationally inexpensive pre-screening algorithm which flags 

potential locations of interest. These flagged locations are then passed to a feature-based 

processer which further discriminates target-like anomalies from naturally occurring 

clutter. Current field trial (over 6500 square meters) and blind test results (over 39000 

square meters) were obtained and these show at least an order of magnitude improvement 

over other radar system-based detection algorithms on the same test lanes.  Results from 

the blind lanes, which are the most realistic test, are summarized below.  Note that this 

algorithm has been implemented in the real system and is currently operating in the field. 

 

For blind test lanes, data was collected by Niitek and burned to CDs for processing. 

Resulting alarm files were presented to the independent contractor within 24 hours of 

receiving the data. No modifications were made to these algorithms at any point during or 

between the two separate test data collections. The ground truth for the blind lanes is 

sequestered and known only to the government sponsor. Blind test lanes consist of buried 

(no surface) plastic and metal-cased anti-tank landmines. Algorithm scores on the blind 

lanes were generated by the independent contractor.  

 

In the eastern US site, blind lane performance was comparable to the calibration lane 

performance. These scores were generated by the third party contractor and represent 

aggregate scores over several lanes spanning 14000 square meters. At this site, the pre-

screener achieves a Pd of 90% at a false alarm rate of approximately 0.0002 false alarms 

per meter squared, and the feature-based processor achieves a Pd of 90% at 

approximately 0.0001 false alarms per meter squared. This performance represents an 

improvement of approximately two orders of magnitude over other fielded radar systems. 

 

Pre-screener results from the western US site also coincide  with results on those 

calibration lanes. These results represent aggregate scores over several lanes spanning 

25000 square meeters. The pre-screener achieves a Pd of 90% at approximately 0.0001 

false alarms per meter squared. The feature based processor was not run on this data due 

to insufficient training data. Again, this performance represents an improvement of 

approximately two orders of magnitude over other fielded radar systems. 

 

Ground Bounce Tracking 

 

In landmine detection applications, the goal is to localize all landmines with a minimum 

number of false alarms. This means that features that can distinguish the landmines from 

the background clutter have to be formulated and extracted. Historically, a combination 

of features from both the time-domain and the frequency domain are required to achieve 

low false alarm rates. One issue that has been a problem for landmine detection 

algorithms is eliminating the radar return from the ground, or the “ground bounce” (GB), 

as it is a significant source of false alarms. It is therefore generally accepted that the GB 

must be detected and removed. 

 

Inaccurate location of the GB can also impact feature extraction. A number of algorithms 

have been proposed for GB tracking and clutter removal in order to increase the accuracy 

of landmine detection. Each of these approaches performed well in relatively benign 



conditions, but may encounter difficulties in more difficult scenarios. The main challenge 

for GB tracking in the real world is that there are a variety of ground conditions, such as 

soil, sandy, gravel, asphalt surfaces, or ground covered with vegetation. These various 

ground surfaces often result in significant anomalies unrelated to the presence of a 

landmine. These anomalies are inhomogeneous and the statistical properties of the GB 

responses may vary with position. GB response characteristics are also influenced by 

weather conditions, such as soil humidity, rain and snow. 

 

Due to the dielectric discontinuities between the ground and the air, the main feature of 

the GB is a sharp peak in each A scan. As a simple GB tracking algorithm, GB locations 

can be roughly estimated by finding the maximum response along each of these A scans, 

which will be referred to as the “global maximum” method. In most cases, particularly in 

benign environments, the ground/air interface does in fact generate the maximum 

response in the GPR signal. However, there are a number of cases where the maximum 

response is generated by other factors, such as the interface between snow and the air or 

surface metallic objects and the air. Other subsurface anomalies can also be problematic 

for a simple GB tracker. These anomalies cause GB tracking based on a global maximum 

to “jump” from one location to another, which significantly impacts the accuracy of 

landmine detection, particularly if GPS interference occurs in the vicinity of a landmine. 

 

An alternative yet still simple ground tracker is based on finding local maximum 

responses, which will be referred to as the “constrained maximum” method. For every 

DT/XT location, this algorithm searches for the maximum radar response in a “safe” 

neighborhood based on the previous GB estimate in the adjacent A Scan, where the size 

of the neighborhood is defined with a pre-defined window size. For a given data set, this 

parameter can be chosen so that both the accuracy and the efficiency of the GB tracking 

are optimized. However, if a variety of data sets are blended, it is difficult to choose this 

parameter so as to make it fit all experimental conditions, which degrades the overall 

performance. Another choice is to apply a Kalman filter based on the global maximum, 

which potentially provides a more accurate GB tracker than the simple approaches 

mentioned above. In essence, the Kalman filtering formulation is the minimum mean 

squared error (MMSE) estimate to the global maximum with a Gaussian observation 

noise, in which linear models are required.16 However, sometimes it is hard to relate the 

GB locations to the observations with linear functions due to the inhomogeneous GB 

signatures. As Sequential Monte Carlo sampling is a technique to estimate the state of 

nonlinear/non-Gaussian stochastic systems, it is potentially a better choice for GB 

tracking problems.  During this project we implemented each of these approaches and 

considered their efficacy on a wide variety of field data. 

 

Generally speaking, and averaged over a wide variety of data, it appeared that the best 

choice for stable robust ground tracking was the Kalman filter, although we are currently 

continuing to investigate other techniques.  The constrained maximum and global 

maximum are computationally simple, but subject to fairly significant error.  The Kalman 

filter is computationally more expensive, but provides better results both in terms of error 

(when the data has been manually ground truthed) and in terms of ROC performance.  

Several of the more advanced techniques considered provided marginally better 



performance, but required parameters to be set carefully and were considerably more 

computationally intense. 

 

Context-dependent learning 

 

It has been well-established over the years in collaborating on the GSTAMIDS, HMDS, 

and AMDS programs that  the performance of feature-based pattern recognition 

algorithms for buried threat detection vary significantly with respect to environmental 

context. Context-dependent learning has therefore been proposed as a technique for 

improving overall performance by exploiting this property and applying context-specific 

algorithm fusion rules.  To characterize the subsurface environment, we developed 

physics-based features that have been shown to be indicative of known soil properties in 

simulated scenarios and weather measurements in field-collected data. Consider the 

figures below; Figure 3 illustrates the results of identifying soil dielectric constant, 

conductivity, surface correlation length, and number of subsurface scatterers from 

simulated GPR data; Figure 4 illustrates the results of identifying dirt/gravel temperature 

and soil moisture content from field-collected GPR data. Results show that using the 

developed features and a relevance vector machine classifier has enabled excellent 

prediction of these environmental factors. 

 
Figure 1. Identification of contextual factors in simulated GPR data. 



 
Figure 2. Identification of contextual factors in field-collected GPR data. 

After these features have been extracted from raw GPR data, a statistical model is used to 

identify the unique contexts from which the data was collected. Current research has 

focused on scenarios where “contextual ground truth” is unavailable, and the number of 

contexts is uncertain. Nonparametric Bayesian models, such as infinite-order Gaussian 

mixtures (which assume independent observations) and hidden Markov models (which 

assume spatially-dependent observations) have been proposed for modeling the 

distribution of context in GPR data and variational learning has been employed to infer 

these models with minimal computational overhead. Figure 3 illustrates an example of a 

hidden Markov context model. The infinite-order HMM was used to automatically learn 

the number of contexts (which was effectively 4), and the results of context identification 

on a particular lane are shown here. On this lane, context appears to be tied to the 

presence of a strong subsurface layer. 

 

Feature-based algorithms 

 

We considered an technique called the texture feature coding method, based out of the 

biomedical image processing literature, that uses texture features to classify data.  The 

texture feature coding method developed by Horng is a technique for translating intensity 

images to class-number images based on thresholded gradients taken along different 

orientations of an intensity image. For each pixel (i, j) in an image, we seek to generate a 

texture feature class number based on the 3pixel by 3pixel sub-image around (i, j). We 

considered directly implementing the 2-D approach as initially posed, but then considered 

several 3-D extensions to apply it to GPR data. 

 



Off-lane GPR data provides a more stringent test of energy-based pre-screening anomaly 

detection algorithms. However, due to the low computational complexity of these 

algorithms, we can utilize feature-based processing at flagged locations of interest to 

improve PD/FAR performance.  We have developed a 3-D extension to the 2-D texture 

feature coding method originally developed by Horng and used for target identification 

by Liang et al. In this work we apply 3-D TFCM to GPR responses taken from pre-

screener flagged locations of interest. Several different features are then extracted from 

the resulting TFCM class numbers. Relevance vector machines trained on these features 

are then used to separate landmine feature sets from clutter feature sets. Current 

PD/FAR curves indicate significant performance improvements for RVM-based feature 

processing over energy-based pre-screening algorithms. Results also indicate 

improvements in target discrimination for 3-D TFCM features compared to their 2-D 

counterparts.  Our future work in this area will include exploration of other TFCM 

features, other feature sets, and different learning machines for target/clutter 

classification. 

 

Sensor/Feature Fusion 

 

In collaboration with UFL, U Missouri, and U. Louisville we have shared features across 

a wide variety of data sets and developed algorithms for performing feature level fusion.  

To date, the algorithms developed at UFL have out-performed the algorithms we have 

tested. 

 

AMDS Algorithm Development 

 

The data processing stream for L3 GPR data has been under consideration.  The L3 GPR 

system is a frequency-domain system, and so to transform the data to the more typical 

range- (temporal/spatial) domain, an inverse fast Fourier transform (IFFT) must be 

applied.  Investigations have suggested that while there is some question as to the current 

implementation of the IFFT to obtain the range-domain GPR data, the differences 

between an ideal implementation and the current implementation do not substantially 

alter the range-domain data.  It may be important to keep these differences in mind, 

however, as future revisions to the system could result in aberrations in the range-domain 

data if these differences become significant but are not considered.  Continuing work will 

investigate the potential implications of the differences between the current frequency-

domain data to range-domain signal IFFT transform in the remainder of the data 

processing stream (alarm generation and classification). 

 

The current L3 GPR data processing (matlab code) takes a 256-point IFFT of the 

frequency-domain data (140-point data for mini-H and 70-point data for PSS-14).  The 

frequency domain data provided to the IFFT is positive frequencies only, while the IFFT 

expects one full cycle of positive and negative frequencies (from 0 to 2).  Providing 

only positive frequencies is not necessarily detrimental to the processing, provided that it 

is done correctly.  In fact, a theoretical construct, analytic signals, provides a mechanism 

to reduce the computational burden for transforming a purely real signal, such as the 

range-domain GPR signal, by working only with the positive half of the frequency-



domain data.  In order for analytic signals to be properly implemented, the frequency 

domain data provided to the IFFT must 1) be purely real at 0 and , and 2) be equal to 0 

for sample points greater than .  In addition, to maintain constant power in the signal, 

the magnitude of the frequency-domain spectrum must be doubled.  The relationship 

between the original spectrum and the corresponding analytic signal spectrum is shown in 

Figure 3 for a synthetic signal composed of two sinusoids.  Note that in the analytic 

spectrum, the positive frequencies (left half of the spectrum) have twice the magnitude of 

the original spectrum and the negative frequencies (right half of the spectrum) are equal 

to 0.  The real part of the IFFT of the analytic spectrum is identically equal to the IFFT of 

the original spectrum. 

 

In the case of the mini-H data, a 256-point IFFT is taken of the 140-point frequency 

spectrum.  As shown in Figure 4, this closely approximates an analytic signal input to the 

IFFT, but there are some notable differences, namely 1) the input is not purely real at 0 

and , and 2) the input is not equal to 0 for frequency samples greater than (negative 

frequencies).  As a result of these discrepancies between an analytic spectrum and the 

spectrum provided to the IFFT, the range-domain signal resulting from the transform is 

not exactly equal to the true IFFT of the frequency-domain spectrum.  Since it is quite 

similar to an analytic signal, however, the real part of the IFFT computed by the current 

implementation is quite close to the properly computed IFFT, though scaled by 0.5 since 

the magnitude has not been doubled to maintain constant power in the signal.  If, instead, 

the mini-H data were augmented to create a true analytic signal by 1) doubling the 

magnitude of the frequency-domain data, 2) pre-pending a single purely-real sample at 0 

(we chose a value of 0 for this sample), 3) appending a single purely-real sample at  (we 

chose a value of 0 for this sample), and 4) appending 140 zeros for the negative 

frequencies prior to taking the real part of a 282-point IFFT, then the result would be the 

true range-domain signal corresponding to the frequency-domain data.  Alternatively, the 

complex conjugate of the original frequency-domain data could be constructed (with the 

addition of purely-real values at 0 and ), and the 282-point IFFT of this signal would 

also be the true range-domain signal corresponding to the frequency-domain data.  

Example range-domain signals are shown in Figure 5.  The red and yellow curves 

correspond to properly computed IFFTs of the frequency-domain data via an analytic 

signal representation (red) and complex conjugate construction (yellow).  The resulting 

range-domain signals are identical because the two methods are equivalent.  The blue 

curve corresponds to the current IFFT implementation (shifted 2 samples to the right in 

order to align the ground bounce with the other signals), and the green curve shows the 

result that would be obtained by taking a 282-point IFFT without fully considering the 

requirements for an analytic signal.  Note that although the current implementation is not 

a precisely accurate implementation of analytic signal representations, it is close enough 

that the end result (blue curve) appears to be a slightly compressed version of the true 

range-domain signal (red and yellow curves). 



 

 

 

 

Figure 4.  Mini-H frequency-domain data provided to IFFT. 

       

Figure 3.  Example frequency-domain spectrum of a synthetic signal composed of two sinusoids (left) and the 
corresponding analytic signal spectrum(right). 
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